4 research outputs found

    A Low Computational Cost RGB Color Image Encryption Scheme Process based on PWLCM Confusion, Z/nZ Diffusion and ECBC Avalanche Effect

    Get PDF
    In this work, three sub-processes are serially integrated into just one process in order to construct a robust new image encryption scheme for all types of images, especially color images. This integration architecture aims to create a robust avalanche effect property while respecting the constraints of confusion and diffusion that have been identified by Claude Shannon as properties required of a secure encryption scheme. The performance of the proposed encryption scheme is measured and discussed with several analyses, including computational cost analysis, key space analysis, randomness metrics  analysis, histogram analysis, adjacent pixel correlation, and entropy analysis. The experimental results demonstrated and validated the performance and robustness of the proposed scheme

    A Low Computational Cost RGB Color Image Encryption Scheme Process based on PWLCM Confusion, Z/nZ Diffusion and ECBC Avalanche Effect

    Get PDF
    In this work, three sub-processes are serially integrated into just one process in order to construct a robust new image encryption scheme for all types of images, especially color images. This integration architecture aims to create a robust avalanche effect property while respecting the constraints of confusion and diffusion that have been identified by Claude Shannon as properties required of a secure encryption scheme. The performance of the proposed encryption scheme is measured and discussed with several analyses, including computational cost analysis, key space analysis, randomness metrics  analysis, histogram analysis, adjacent pixel correlation, and entropy analysis. The experimental results demonstrated and validated the performance and robustness of the proposed scheme

    Features Clustering Around Latent Variables for High Dimensional Data

    Get PDF
    Clustering of variables is the task of grouping similar variables into different groups. It may be useful in several situations such as dimensionality reduction, feature selection, and detect redundancies. In the present study, we combine two methods of features clustering the clustering of variables around latent variables (CLV) algorithm and the k-means based co-clustering algorithm (kCC). Indeed, classical CLV cannot be applied to high dimensional data because this approach becomes tedious when the number of features increases

    Application of Latent Dirichlet Allocation (LDA) for clustering financial tweets

    No full text
    Sentiment classification is one of the hottest research areas among the Natural Language Processing (NLP) topics. While it aims to detect sentiment polarity and classification of the given opinion, requires a large number of aspect extractions. However, extracting aspect takes human effort and long time. To reduce this, Latent Dirichlet Allocation (LDA) method have come out recently to deal with this issue.In this paper, an efficient preprocessing method for sentiment classification is presented and will be used for analyzing user’s comments on Twitter social network. For this purpose, different text preprocessing techniques have been used on the dataset to achieve an acceptable standard text. Latent Dirichlet Allocation has been applied on the obtained data after this fast and accurate preprocessing phase. The implementation of different sentiment analysis methods and the results of these implementations have been compared and evaluated. The experimental results show that the combined uses of the preprocessing method of this paper and Latent Dirichlet Allocation have an acceptable results compared to other basic methods
    corecore